Министерство науки и высшего профессионального образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования Ульяновский государственный университет Кафедра нефтегазового дела и сервиса

Автор: профессор Германович П,К.

«МНОГОФАЗНЫЕ ТЕЧЕНИЯ».

Методические указания к самостоятельной работе студентов магистратуры по направления 21.04.01 «Нефтегазовое дело»

Ульяновск

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

В методических указаниях по организации самостоятельной работы по курсу «Многофазные течения», представлены вопросы для подготовки к семинарским и практическим занятиям.

Цель самостоятельной работы студентов – организация систематического изучения дисциплины в течение семестра, закрепление и углубление полученных знаний..

Самостоятельная работа по дисциплине «Многофазные течения», выполняемая студентами, включает следующие виды деятельности:

- проработка учебного материала по конспектам, учебной и научной литературе;
- подготовка ответов на вопросы итогового экзамена.

Методические указания предназначены для выполнения самостоятельной работы студентов магистратуры по направлению «Нефтегазовое дело».

Содержание, требования, условия и порядок организации самостоятельной работы обучающихся с учетом формы обучения определяются в соответствии с «Положением об организации самостоятельной работы обучающихся», утвержденным Ученым советом УлГУ (протокол №8/268 от 26.03.2019 г.).

По данной дисциплине организуется и проводится внеаудиторная самостоятельная работа.

Самостоятельная работа студентов, предусмотренная учебным планом в объеме не менее 50-70% общего количества часов, должна соответствовать более глубокому усвоению изучаемого курса, формировать навыки исследовательской работы и ориентировать студентов на умение применять теоретические знания на практике.

При подготовке к практическим и лабораторным занятиям рекомендуется руководствоваться учебниками и учебными пособиями, в том числе и информацией, полученной в INTERNET.

Задания для самостоятельной работы требует дополнительной проработки и анализа рассматриваемого преподавателем материала в объеме запланированных часов.

Задания по самостоятельной работе могут быть оформлены в виде таблицы с указанием конкретного вида самостоятельной работы:

- проработка учебного материала (по конспектам лекций учебной и научной литературе) и подготовка докладов на семинарах и практических занятиях, к участию в тематических дискуссиях и деловых играх;
- поиск и обзор научных публикаций и электронных источников информации, подготовка заключения по обзору; выполнение контрольных работ, творческих (проектных) заданий, курсовых работ (проектов);

Студентам рекомендуется следующий порядок организации самостоятельной

работы над темами и подготовки к практическим занятиям:

- ознакомиться с содержанием темы;
- прочитать материал лекций, при этом нужно составить себе общее представление об излагаемых вопросах;
 - прочитать параграфы учебника, относящиеся к данной теме;
- перейти к тщательному изучению материала, усвоить теоретические положения и выводы, при этом нужно записывать основные положения темы (формулировки, определения, термины, воспроизводить отдельные схемы и чертежи из учебника и конспекта лекций);

Результаты самостоятельной работы контролируются преподавателем и учитываются при аттестации студента.

2.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

а) Список рекомендуемой литературы основная

- 1.Мищенко И. Т.Скважинная добыча нефти: учеб. пособие для вузов по спец. "Разработка и эксплуатация нефтяных и газовых месторождений" направления подгот. специалистов "Нефтегазовое дело" / Мищенко Игорь Тихонович. 2-е изд., испр. М.: Нефть и газ, 2007- 826с. в эк 25 экз.
- 2.Храменков, В. Г. Автоматизация управления технологическими процессами бурения нефтегазовых скважин : учебное пособие для академического бакалавриата / В. Г. Храменков. Москва : Издательство Юрайт, 2019. 415 с. (Университеты России). ISBN 978-5-534-00854-8. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://www.biblio-online.ru/bcode/433830

дополнительная

- 1.Храменков, В. Г. Автоматизация управления технологическими процессами бурения нефтегазовых скважин / В. Г. Храменков. Томск : Томский политехнический университет, 2012. 416 с. ISBN 978-5-4387-0082-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/34648.html
- **2.**Арбузов, В. Н. Сборник задач по технологии добычи нефти и газа в осложненных условиях : практикум / В. Н. Арбузов, Е. В. Курганова. Томск : Томский политехнический университет, 2015. 68 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/34711.html
- 3. Арбузов, В. Н. Геология. Технология добычи нефти и газа. Практикум: практическое

- пособие для вузов / В. Н. Арбузов, Е. В. Курганова. Москва : Издательство Юрайт, 2019. 67 с. (Университеты России). ISBN 978-5-534-01542-3. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://www.biblio-online.ru/bcode/433978
- **4.**Мищенко, Игорь Тихонович. Выбор способа эксплуатации скважин нефтяных месторождений с трудноизвлекаемыми запасами / Мищенко Игорь Тихонович, Т. Б. Бравичева, А. И. Ермолаев. М.: Нефть и газ, 2005. В эк 6 экз.
- 5.Щуров, Виктор Иванович. Технология и техника добычи нефти: учебник для вузов по спец. "Технология и комплексная механизация разработки нефтяных и газовых месторождений" / Щуров Виктор Иванович. 3-е изд., стер. М.: Альянс, 2009 в эк- 10экз.

учебно-методическая:

- 1. Методические указания по выполнению и оформлению курсовых работ для студентов, обучающихся по специальностям "Нефтегазовое дело" и "Сервис" [Электронный ресурс] / А. И. Кузнецов [и др.]; УлГУ, ИФФВТ. Электрон. текстовые дан. (1 файл : 164 Кб). Ульяновск : УлГУ, 2014. Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/450/Kuznetcov.pdf
- 2.Нефтепродукты [Электронный ресурс] : учебно-справочное пособие. Ч. 2 : Основные характеристики. Методы оценки качества / А. И. Кузнецов [и др.]; УлГУ, ИФФВТ. Электрон. текстовые дан. (1 файл : 3,08 Мб). Ульяновск : УлГУ, 2018. Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/1222/Kuznecov2018-2.pdf
- 3.Нефтепродукты [Электронный ресурс] : учебно-справочное пособие. Ч. 1 : Классификация, номенклатура, нормативные требования к качеству / А. И. Кузнецов [и др.]; УлГУ, ИФФВТ. Электрон. текстовые дан. (1 файл : 3,16 МБ). Ульяновск : УлГУ, 2018. Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/1221/Kuznecov2018-1.pdf

в) профессиональные базы данных, информационно-справочные системы:

1. Электронно-библиотечные системы:

- 1.1. **IPRbooks** [Электронный ресурс]: электронно-библиотечная система / группа компаний Ай Пи Эр Медиа . Электрон. дан. Саратов , [2019]. Режим доступа: http://www.iprbookshop.ru.
- 1.2. **ЮРАЙТ** [Электронный ресурс]: электронно-библиотечная система / ООО Электронное издательство ЮРАЙТ. Электрон. дан. Москва, [2019]. Режим доступа: https://www.biblio-online.ru.
- 1.3. **Консультант студента** [Электронный ресурс]: электронно-библиотечная система / ООО Политехресурс. Электрон. дан. Москва, [2019]. Режим доступа: http://www.studentlibrary.ru/pages/catalogue.html.
- 1.4. **Лань** [Электронный ресурс]: электронно-библиотечная система / ООО ЭБС Лань. Электрон. дан. С.-Петербург, [2019]. Режим доступа: https://e.lanbook.com.

- 1.5. Znanium.com [Электронный ресурс]: электронно-библиотечная система / 000 Знаниум. - Электрон. дан. – Москва, [2019]. - Режим доступа: http://znanium.com.
- 2. **КонсультантПлюс** [Электронный ресурс]: справочная правовая система. /Компания «Консультант Плюс» Электрон. дан. Москва : КонсультантПлюс, [2019].
- 3. **База данных периодических изданий** [Электронный ресурс] : электронные журналы / ООО ИВИС. Электрон. дан. Москва, [2019]. Режим доступа: https://dlib.eastview.com/browse/udb/12.
- 4. **Национальная электронная библиотека** [Электронный ресурс]: электронная библиотека. Электрон. дан. Москва, [2019]. Режим доступа: https://нэб.рф.
- 5. Электронная библиотека диссертаций РГБ [Электронный ресурс]: электронная библиотека / ФГБУ РГБ. Электрон. дан. Москва, [2019]. Режим доступа: https://dvs.rsl.ru.

6. Федеральные информационно-образовательные порталы:

- 6.1. Информационная система <u>Единое окно доступа к образовательным ресурсам</u>. Режим доступа: http://window.edu.ru
- 6.2. Федеральный портал <u>Российское образование</u>. Режим доступа: http://www.edu.ru
- 7. Образовательные ресурсы УлГУ:
- 7.1. Электронная библиотека УлГУ. Режим доступа: http://lib.ulsu.ru/MegaPro/Web
- 7.2. Образовательный портал УлГУ. Режим доступа: http://edu.ulsu.ru

3.ТЕМЫ ЛЕКЦИЙ И ИХ СОДЕРЖАНИЕ

Тема 1. Течение идеальной жидкости,

Уравнение непрерывности. Уравнение Эйлера. Идеальная жидкость. Плотность

потока энтропии. Гидростатика. Уравнение Бернулли. Поток энергии. Поток импульса, тензор плотности потока импульса. Циркуляция скорости, теорема Томсона. Завихреность.

Тема 2. Потенциал и функция тока.

Потенциальное движение. Несжимаемая жидкость, функция тока, комплексный потенциал. Источник, вихрь. Сила сопротивления при потенциальном обтекании, подъемная сила.

Тема 3. Течение вязкой жидкости.

Уравнение движения вязкой жидкости (уравнение Навье-Стокса). Кинематическая, динамическая вязкость. Уравнения движения в криволинейных координатах. Диссипация энергии в несжимаемой жидкости. Ламинарное течение несжимаемой жидкости. Число Рейнольдса. Точные решения уравнения движения несжимаемой жидкости: одномерное течение между двумя параллельными плоскими стенками, течение по трубе (течение Пуазейля), движение жидкости между вращающимися цилиндрами. Турбулентное течение вязкой жидкости. Уравнение Рейнольдса.

Тема 4. Теория пограничного слоя.

Пограничный слой. Основные свойства пограничного слоя при ламинарном течении жидкости. Устойчивость движения в ламинарном пограничном слое. Логарифмический профиль скоростей. Пограничный слой при турбулентном течении

жидкости.

Тема 5. Волны в жидкости и газе.

Гравитационные волны, длинные гравитационные волны. Понятие о солитоне, закон дисперсии уединенной волны. Плоские звуковые волны. Сферические волны. Энергия и импульс звуковой волны. Отражение звуковых волн. Волны Римана, опрокидывание волны Римана.

Тема 6. Ударные и детонационные волны.

Уравнения газодинамики при одномерном движении газа. Ударные волны. Условия на фронте ударной волны. Слабые ударные волны. Адиабата Гюгонио. Адиабата Пуассона. Детонационные волны. Условие Чепмена – Жуге.

Тема 7. Виды деформаций упругих твердых тел.

Закон Гука, деформация прямоугольного параллелепипеда, деформация сдвига,

задача о бруске с закрепленными боковыми границами, кручение стержня, деформация изгиба, энергия упругой деформации, волны в стержнях.

Тема 8. Тензоры деформаций, поворота и напряжений.

Тензор деформаций, вектор смещения, физический смысл компонент тензора деформации, тензор поворота, тензор напряжений, условие равновесия при однородном напряжении

Тема 9. Основные уравнения теории упругости

Уравнения движения и условия равновесия, термодинамика деформирования, работа внешних сил, обобщенный закон Гука при изотермическом процессе, закон Гука для анизотропных тел и изотропных тел, взаимосвязь между коэффициентами Ламэ, модулем Юнга и коэффициентом Пуассона, уравнение Ламэ, упругие волны в изотропной среде.

4. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ

Содержание, требования, условия и порядок организации самостоятельной работы обучающихся с учетом формы обучения определяются в соответствии с «Положением об организации самостоятельной работы обучающихся», утвержденным Ученым советом УлГУ (протокол №8/268 от 26.03.2019 г.).

			Форма
	Вид самостоятельной работы		контроля
	(проработка учебного материала,	Объем	(проверка
Название разделов и тем	решение задач, реферат, доклад,	В	решения
	контрольная работа, подготовка к	часах	задач,
	сдаче зачета, экзамена и др.)		реферата
			<i>и др.)</i>
Задачи	• Проработка учебного материала с	4	устный
феноменологической	использованием ресурсов учебно-		опрос,
теории многофазного	методического и информационного		зачёт

континуума	обеспечения дисциплины;		
	Подготовка к сдаче экзамена		
Задачи термодинамики	• Проработка учебного материала с	4	устный
многофазных сред	использованием ресурсов учебно-		опрос,
	методического и информационного		зачёт
	обеспечения дисциплины;		
	• Подготовка к сдаче экзамена		
Модели течения	• Проработка учебного материала с	10	устный
многофазных сред в ка-	использованием ресурсов учебно-		опрос,
налах и трубах	методического и информационного		зачёт
требования и структура	обеспечения дисциплины;		
планов ликвидации	• Подготовка к сдаче экзамена		
разливов нефти.			

5. ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ОБЯЗАТЕЛЬНОГО ИЗУЧЕНИЯ

- 1. Роль многофазной гидромеханики.
- 2. Классификация многофазных сред.
- 3. Основные принципы построения математических моделей. Гипотезы механики многофазных сред.
- 4. Осреднение по объему.
- 5. Многофазный континуум.
- 6. Среднеобъемные, среднемассовые и среднерасходные характеристики многофазной смеси.
- 7. Уравнения сохранения массы для каждой из фаз и смеси в целом (в интегральном и дифференциальном виде).
- 8. Понятие субстанциональной производной.
- 9. Интенсивность фазового перехода.
- 10. Тензор напряжений в двухфазной среде.
- 11. Функция давления в двухфазной среде.
- 12. Условие совместного деформирования.
- 13. Сила межфазного взаимодействия.
- 14. Приток импульса за счет фазового перехода.
- 15. Межфазная сила за счет действия давлений (за счет расширения трубки тока).
- 16. Сила межфазного трения.
- 17. Среднемассовая скорос ть вещества, претерпевающего фазовый переход.
- 18. Уравнения движения фаз и смеси в целом.
- 19. Условие локального термодинамического равновесия.
- 20. Внутренняя энергия, кинетическая энергия и полная энергия фаз и смеси в целом.
- 21. Уравнения полной энергии фаз и смеси. Межфазный обмен энергией (работа межфазных сил, теплопередача на межфазной границе, перенос энергии при фазовом переходе).
- 22. Первое начало термодинамики.
- 23. Первый закон термодинамики для однофазной и многофазной систем.

- 24. Уравнение кинетической энергии фаз и смеси в целом.
- 25. Уравнение внутренней энергии (притока тепла) для каждой из фаз.
- 26. Работа внутренних поверхностных сил.
- 27. Работа сил межфазного взаимодействия.
- 28. Уравнение притока тепла для многофазной смеси.
- 29. Условие на теилоперетоки на межфазных границах.
- 30. Уравнение состояния для давления и внутренней энергии для газовой и жидкой фаз.
- 31. Условие совместного деформирования.
- 32. Уравнения реологии.
- 33. Фазовая диаграмма вещества.
- 34. Уравнения кинетики фазовых переходов.
- 35. Выражение для межфазных сил и теплоперетоков.
- 36. Уравнение Клапейрона-Клаузиуса.
- 37. Коэффициенты диссипации.
- 38. Условие согласования энтальпий на линии насыщения.
- 39. Основные свойства гомогенной и гетерогенной смеси.
- 40. Диффузионная модель механики многофазных сред.
- 41. Уравнение диффузии.
- 42. Переход от модели гетерогенной смеси к описанию гомогенной модели.
- 43. Одномерные газожидкостные течения (основные характеристики течения).
- 44. Режимы течений в трубах.
- 45. Квазиодномерное течение в трубе.
- 46. Уравнения неразрывности фаз в случае квазиодномерного дисперсно-кольцевого течения.
- 47. Интенсивность процессов массообмена между фазами.
- 48. Уравнение движения фаз для квазиодномерпого дисперсно-кольцевого течения.
- 49. Уравнения притока тепла фаз для квазиодномерного дисперсно-кольцевого течения.
- 50. Переход от двухскоростной модели квазиодномерного потока к двухфазной диффузионной модели в каналах.
- 51. Модель стационарного квазигомогенного течения в каналах.
- 52. Использование модели осредненного квазиодномерного течения для практического расчета работающей скважины.
- 53. Уравнения сохранения для квазигомогениой смеси.
- 54. Особенности расчета пробковых течений.